18,560 research outputs found

    Lightweight Modular Instrumentation for Planetary Applications

    Get PDF
    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment

    On the global visibility of singularity in quasi-spherical collapse

    Get PDF
    We analyze here the issue of local versus the global visibility of a singularity that forms in gravitational collapse of a dust cloud, which has important implications for the weak and strong versions of the cosmic censorship hypothesis. We find conditions as to when a singularity will be only locally naked, rather than being globally visible, thus preseving the weak censorship hypothesis. The conditions for formation of a black hole or naked singularity in the Szekeres quasi-spherical collapse models are worked out. The causal behaviour of the singularity curve is studied by examining the outgoing radial null geodesics, and the final outcome of collapse is related to the nature of the regular initial data specified on an initial hypersurface from which the collapse evolves. An interesting feature that emerges is the singularity in Szekeres spacetimes can be ``directionally naked''.Comment: Latex file, 32 pages, 12 postscript figures. To appear in the Journal of General Relativity and Gravitatio

    Stability of Naked Singularity arising in gravitational collapse of Type I matter fields

    Full text link
    Considering gravitational collapse of Type I matter fields, we prove that, given an arbitrary C2C^{2}- mass function M(r,v)\textit{M}(r,v) and a C1C^{1}- function h(r,v)h(r,v) (through the corresponding C1C^{1}- metric function ν(t,r)\nu(t,r)), there exist infinitely many choices of energy distribution function b(r)b(r) such that the `true' initial data (M,h(r,v)\textit{M},h(r,v)) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole and naked singularity form a "big" subset of the true initial data set, their occurrence is not generic. The terms `stability' and `genericity' are appropriately defined following the theory of dynamical systems. The particular case of radial pressure pr(r)p_{r}(r) has been illustrated in details to get clear picture of how naked singularity is formed and how, it is stable with respect to initial data.Comment: 16 pages, no figure, Latex, submitted to Praman

    Gravitational collapse of an isentropic perfect fluid with a linear equation of state

    Full text link
    We investigate here the gravitational collapse end states for a spherically symmetric perfect fluid with an equation of state p=kρp=k\rho. It is shown that given a regular initial data in terms of the density and pressure profiles at the initial epoch from which the collapse develops, the black hole or naked singularity outcomes depend on the choice of rest of the free functions available, such as the velocities of the collapsing shells, and the dynamical evolutions as allowed by Einstein equations. This clarifies the role that equation of state and initial data play towards determining the final fate of gravitational collapse.Comment: 7 Pages, Revtex4, To appear in Classical and Quantum Gravit

    PONDER - A Real time software backend for pulsar and IPS observations at the Ooty Radio Telescope

    Full text link
    This paper describes a new real-time versatile backend, the Pulsar Ooty Radio Telescope New Digital Efficient Receiver (PONDER), which has been designed to operate along with the legacy analog system of the Ooty Radio Telescope (ORT). PONDER makes use of the current state of the art computing hardware, a Graphical Processing Unit (GPU) and sufficiently large disk storage to support high time resolution real-time data of pulsar observations, obtained by coherent dedispersion over a bandpass of 16 MHz. Four different modes for pulsar observations are implemented in PONDER to provide standard reduced data products, such as time-stamped integrated profiles and dedispersed time series, allowing faster avenues to scientific results for a variety of pulsar studies. Additionally, PONDER also supports general modes of interplanetary scintillation (IPS) measurements and very long baseline interferometry data recording. The IPS mode yields a single polarisation correlated time series of solar wind scintillation over a bandwidth of about four times larger (16 MHz) than that of the legacy system as well as its fluctuation spectrum with high temporal and frequency resolutions. The key point is that all the above modes operate in real time. This paper presents the design aspects of PONDER and outlines the design methodology for future similar backends. It also explains the principal operations of PONDER, illustrates its capabilities for a variety of pulsar and IPS observations and demonstrates its usefulness for a variety of astrophysical studies using the high sensitivity of the ORT.Comment: 25 pages, 14 figures, Accepted by Experimental Astronom

    North-South Distribution of Solar Flares during Cycle 23

    Full text link
    In this paper, we investigate the spatial distribution of solar flares in the northern and southern hemisphere of the Sun that occurred during the period 1996 to 2003. This period of investigation includes the ascending phase, the maximum and part of descending phase of solar cycle 23. It is revealed that the flare activity during this cycle is low compared to previous solar cycle, indicating the violation of Gnevyshev-Ohl rule. The distribution of flares with respect to heliographic latitudes shows a significant asymmetry between northern and southern hemisphere which is maximum during the minimum phase of the solar cycle. The present study indicates that the activity dominates the northern hemisphere in general during the rising phase of the cycle (1997-2000). The dominance of northern hemisphere is shifted towards the southern hemisphere after the solar maximum in 2000 and remained there in the successive years. Although the annual variations in the asymmetry time series during cycle 23 are quite different from cycle 22, they are comparable to cycle 21.Comment: 6 pages, 2 figures, 1 table; Accepted for the publication in the proceedings of international solar workshop held at ARIES, Nainital, India on "Transient Phenomena on the Sun and Interplanetary Medium" in a special issue of "Journal of Astrophysics and Astronomy (JAA)

    A hadronic scenario for HESS J1818-154

    Full text link
    Aims: G15.4+0.1 is a faint supernova remnant (SNR) that has recently been associated with the gamma-ray source HESS J1818-154. We investigate a hadronic scenario for the production of the gamma-ray emission. Methods: Molecular 13CO (J=1-0) taken from the Galactic Ring Survey (GRS) and neutral hydrogen (HI) data from the Southern Galactic Plane Survey (SGPS) have been used in combination with new 1420 MHz radio continuum observations carried out with the Giant Metrewave Radio Telescope (GMRT). Results: From the new observations and analysis of archival data we provided for the first time a reliable estimate for the distance to the SNR G15.4+0.1 and discovered molecular clouds located at the same distance. On the basis of HI absorption features, we estimate the distance to G15.4+0.1 in 4.8+/-1.0 kpc. The 13CO observations clearly show a molecular cloud about 5 arcmin in size with two bright clumps, labeled A and B, clump A positionally associated with the location of HESS J1818-154 and clump B in coincidence with the brightest northern border of the radio SNR shell. The HI absorption and the 13CO emission study indicates a possible interaction between the molecular material and the remnant. We estimate the masses and densities of the molecular gas as (1.2+/-0.5)X10^3 M_sun and (1.5+/-0.4)X10^3 cm^-3 for clump A and (3.0+/-0.7)X10^3 M_sun and (1.1+/-0.3)X10^3 cm^-3 for clump B. Calculations show that the average density of the molecular clump A is sufficient to produce the detected gamma-ray flux, thus favoring a hadronic origin for the high-energy emission.Comment: Accepted to be published in Astronomy and Astrophysics Letter

    The Costs of Ecosystem Adaptation: Methodology and Estimates for Indian Forests

    Get PDF
    This paper presents a detailed methodology for estimating the cost of adaptation to climate change impacts on ecosystems. Up to date estimates are built-up following national investments in measures such as protected areas, with inaccurate estimates of the adaptation level needed. Here we propose a new methodology which identifies vulnerable areas due to climate impacts and the specific adaptation options feasible for these regions. An illustration of the methodology for shifts in forest ecosystems in India is presented. Advantages and future requirements for this methodology are finally discussed.Climate change, adaptation costs, forest ecosystems, India
    corecore